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Automatic Pronunciation Scoring with Score
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Abstract—This paper proposes an automatic pronunciation
scoring framework using learning to rank and class-normalized,
dynamic-programming-based quantization. The goal is to train a
model that is able to grade the pronunciation of a second language
learner, such that the predicted score is as close as possible to the
one given by a human teacher. Under this framework, each utter-
ance is given a score of 1 to 5 by human raters, which is treated
as a ground truth rank for the training algorithm. The corpus
was rated by qualified English teachers in Taiwan (nonnative
speakers). Nine phone-level scores are computed and converted
into word-level scores through four conversion methods. We select
the 16 best performing scores as the input features to train the
learning-to-rank function. The output of the function is then
quantized to a discrete rank on a 1-5 scale. The quantization is
done with class normalization to alleviate the problem of data
imbalance over different classes. Experimental results show that
the proposed framework achieves a higher correlation to the
human scores than other methods, along with higher accuracy in
detecting instances of mispronunciation. We also release a new
version of our nonnative corpus with human rankings.
Index Terms—Automatic pronunciation scoring, computer as-

sisted language learning (CALL), computer assisted pronunciation
training (CAPT), learning to rank.

I. INTRODUCTION

T HE introduction of computer-assisted language learning
systems provides L2 learners (second language learners)

a new means by which to improve their language skills without
the presence of human teachers. Such systems have been shown
to be useful in improving students’ language skills [1]–[3] and
typically address one or more of the four basic aspects of lan-
guage learning: listening, speaking, reading, and writing. Aside
from offering static course material, such systems are also ex-
pected to provide performance feedback, particularly in com-

Manuscript received August 24, 2013; revised December 24, 2013; accepted
June 08, 2015. Date of publication June 23, 2015; date of current version June
30, 2015. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Bowen Zhou.
L. Y. Chen is with the Institute of Information Systems and Applica-

tions, National Tsing Hua University, Hsinchu 30013, Taiwan (e-mail:
davidson833@mirlab.org).
J. S. R. Jang is with the Department of Computer Science and Information

Engineering, National Taiwan University, Taipei 10617, Taiwan (e-mail:
jang@csie.ntu.edu.tw).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASLP.2015.2449089

puter-assisted pronunciation training (CAPT) systems, offering
learners instant assessments on their pronunciation.
Various methods have been proposed for different tasks in

CAPT applications. Some focus on detecting mispronunciation
in L2 utterances [4]–[6], while others assess stress placement
in a word or a sentence [7]–[9]. Black et al. [10] used four
methods to verify (i.e., to accept or reject) children’s pronun-
ciation of English letter-names and letter-sounds, while other
researchers tried to grade L2 learner pronunciation quality.
Neumeyer et al. [11] proposed four sentence-level scoring
methods based on log-likelihood and duration information
obtained from forced alignment using hidden Markov models
(HMMs) [12]. Franco et al. [13] expanded Neumeyer’s work to
propose another scoring method based on posterior probability
by considering both log-likelihood and prior probability for
a phone segment. These scoring methods were also used to
grade 10 specific French phones in [14]. Our previous work
proposed three word-level scoring methods [15][16]. In this
study, we refer to the scoring methods based on a single aspect
of pronunciation quality as basic pronunciation scoring, hence
these scores are called basic scores.
On the other hand, a number of researchers have focused on

combining different scores to produce a single score for an ut-
terance in order to compensate for the various weaknesses of
each scoring method. Franco et al. [17] explored various linear
and nonlinear score combination methods to aggregate the three
basic scores proposed in [11] and [13]. Results show that neural
networks perform better than the other three score combina-
tion methods (linear regression, probability distribution estima-
tion, and regression trees). However, Franco also mentioned
that neural networks have a disadvantage in their relatively high
computing costs for training, where different network architec-
tures must be tested and their training parameters must be man-
ually tuned to obtain optimal performance.
Cincared et al. [18] also proposed two score combination

methods to aggregate various sentence-level and word-level
basic scores. The first method treats each score (1-5) as a class
and models each class as a Gaussian distribution. The score
of the input utterance is then computed from the likelihood
values of the Gaussian models and the class prior probabilities.
The second method combines basic scores linearly, using a
multiplicative polynomial to avoid producing skewed results
from the linear combination step.
As suggested by Yang and Chen [19], it is easier for a human

rater to make a relative judgment than to assign an exact score,
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i.e., people tend to judge performance based on a relative sense
of other instances. To capture this relative information, our ear-
lier work proposed a score combination method which inte-
grated learning to rank and a DP-based (dynamic-programming-
based) quantization algorithm to transform the output of the
learning to rank function to pronunciation scores [15]. Under
this framework, each utterance of the training data is given a
human-labeled score from 1-5. By treating each score as a rank
and treating basic pronunciation scores as input features, we can
apply any existing learning to rank algorithms and thus grade the
pronunciation quality. Results show that this learning to rank
framework (using RankSVM) can yield higher scoring corre-
lation to human raters than using k-means and all other basic
scoring methods. In [16], we examined the use of three types of
phone-level to word-level conversion methods (average-based,
vowel-based, and consonant-based) to convert six basic scores,
and compared the performance of two learning to rank algo-
rithms, RankSVM and ListNet, to three existing score combi-
nation methods proposed in [17] and [18]. It was found that
using all three types of phone-level to word-level conversion
methods (i.e., all 18 word-level basic scores) yields better per-
formance than using average-based method alone, and ListNet
achieves the highest correlation among all five score combina-
tion methods.
Two issues were not considered in our previous work. First,

our previous system simply adopts all types of basic scores
as inputs for the learning to rank function. The effect of each
individual basic score on overall performance was not exam-
ined. Second, the dataset used in the experiment is imbalanced
over different classes. While this shows how data would be dis-
tributed in the practical situation, the imbalanced data issue was
not considered in the algorithm.
In this paper, we aim to improve our previously proposed

learning to rank framework as follows:
1) Nine basic scores are examined for their effectiveness

under four different phone-level to word-level conversion
methods. In addition to the three abovementioned con-
version methods, the duration-weighted method is also
examined.

2) A class-normalized quantization is proposed to alleviate
the problem of imbalanced data over different classes.

3) We examine how basic scores in different forms affect the
performance of score combination. For instance, for some
basic scores, using the proposed quantization method to
convert the raw basic scores to quantized ones can alleviate
the skew distribution problem.

4) By adopting the above improvement, two learning to
rank algorithms are evaluated against 5 other methods,
including the three score combination methods proposed
by [17] and [18] and two ordinal regression methods.

To evaluate the proposed method, we also established a non-
native speech database called MIR-SD (Multimedia Informa-
tion Retrieval lab, Stress Detection) [20], a dataset that was
originally designed for stress detection of multi-syllabic Eng-
lish words and was recorded by Taiwanese speakers. MIR-SD
contains over 10,000 utterances recorded by 51 speakers, and
currently only 2000 utterances from 25 speakers were rated by
four qualified English teachers in Taiwan (nonnative speakers).

This dataset, as well as the human scores, is freely available on-
line.1
The rest of this paper is organized as follows. Section II de-

scribes the native and nonnative speech corpora and the human
ranks of the nonnative speech corpus. Section III introduces nine
basic pronunciation scoring methods. Section IV explains how
to incorporate these basic scores into the learning to rank frame-
work for score combination. Section V reports the experimental
results of various system components as well as the overall per-
formance comparison, and Section VI presents conclusions and
some future research directions.

II. SPEECH CORPORA

A. Native Corpus

To assess the pronunciation quality of an utterance, we need
to first establish a speech recognition engine. In this study, the
WSJ corpus [21] (wsj0, 64442 utterances) is used to train a set
of biphone HMMs for speech recognition. Some previous work
[22][23] shows that, for the pronunciation evaluation of nonna-
tive English utterances, monophone (or biphone) models per-
form better than triphone models, if the models are trained from
native speech. This is becausemonophopne and biphonemodels
contain less contextual information than triphone models and
are more tolerant of mismatches between native and nonnative
pronunciation. The work in [22] suggests that biphone models
perform better than triphone models in terms of having more
tolerance for pronunciation mismatches while retaining a cer-
tain degree of context-dependency information. The work in
[23], on the other hand, suggests the use of monophone models
rather than triphone models. Based on our preliminary experi-
ment, biphone models perform slightly better in basic pronun-
ciation scoring than monophone models in terms of human-ma-
chine correlation. Biphone HMMs are therefore adopted in this
study. Features used in this study include 12-dimensional Mel-
frequency cepstral coefficients (MFCCs) and one dimensional
energy, along with their first and second derivatives.
To evaluate the quality of the trained acoustic models, we

perform forced alignment on the test set of the TIMIT dataset
[24]. The performance is reported in terms of the percentage
of the automatically-aligned boundaries being within a given
time threshold of the corresponding manually-aligned bound-
aries. An HMM/ANN hybrid model trained using the TIMIT
training set [25] and five acoustic-phonetic features and PLP
features achieved 92.57% agreement using 20 ms threshold,
where the model. Our acoustic models (HMM, trained using
WSJ and tested on TIMIT) achieve 67.4% agreement using a
20 ms threshold and 86.3% using a 40 ms threshold. Despite our
alignment agreement being lower due to mismatch of training
and test data and less complexmodels, themajority of phonemes
(86.3%) are still within a reasonable range of 40 ms.
A subset of the corpus (35487 utterances) is also used to com-

pute various statistics of each biphone model for basic pronun-
ciation scoring. Section III provides a detailed explanation for
how this information is used.

1http://mirlab.org/dataset/public
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TABLE I
GUIDELINES FOR HUMAN SCORING

B. Nonnative Corpus

Raab et al. [26] reviewed a number of nonnative speech
databases. However, only a few of these satisfy the require-
ments of our research, and these databases are no longer
publicly available. We therefore decided to construct our
own nonnative speech database, MIR-SD [20], along with
human ratings on pronunciation quality. It was recorded by
51 Taiwanese speakers as a take-home task for students in a
postgraduate computer science course. They were instructed
to record the prompted English words using their own unidi-
rectional microphones. Similar to the corpus collection process
used in [14], recordings with poor recording quality (either due
to background noise or insufficiently loud recording volume)
or with serious disfluency or hesitation were omitted, thus
reducing the corpus size to 25 speakers (6 females and 19
males). The speakers’ mother tongue is Mandarin and their
English competence levels are mostly intermediate, meaning
they are capable of pronouncing most of the words correctly.
Each speaker was asked to record over 200 English words,
where each utterance contains only one multi-syllabic English
word selected from various sources including medical articles,
vocabulary lists for university entrance exams in Taiwan, and
an English spelling contest for university students in Taiwan.
The recording resolution is 16 bits and the sampling frequency
is 16 kHz. In this study, only 80 utterances from each speaker
are used, for a total of 2000 utterances.

C. Human Rankings

Human rankings of the nonnative corpus are required for both
training and evaluating the proposed system. Each of the 2000
utterances was scored by four human raters on a scale of 1 (un-
intelligible) to 5 (intelligible). The raters are qualified English
teachers with master degrees from the foreign language depart-
ments of various highly ranked universities in Taiwan. To en-
sure consistency, the raters were given a scoring guideline, as
shown in Table I, before commencing the scoring task. Com-
pared to other studies, this scoring guideline was rather lenient
in terms of consistency with native pronunciation. To be useful
to a wide range of L2 students, our system aims to help them
pronounce words intelligibly rather than train them to emulate
native-speaker pronunciation. Although the human raters were
not native English speakers, their English language skills were
sufficient to determine the intelligibility of pronunciation.
Table II shows the word-based inter-rater correlation coef-

ficient and human-to-ground-truth correlations, indicating the

TABLE II
CONSISTENCY EVALUATION BETWEEN HUMAN RATERS

TABLE III
DISTRIBUTION OF GROUND TRUTH SCORES

consistency between human raters, where HR1 to HR4 denote
the four human raters, and GT denotes ground truth. The ground
truth is computed by voting among all four raters; an average of
the four raters is used in the event of a tie. Inter-rater correlations
are computed as the average of correlations between all pairs
of human raters. Word-based correlations are computed using
the scores for each word. The correlations shown in Table II are
comparable to most of the existing research [13], [14], [18], and
this is the theoretical upper bound of the performance of score
computation.
Table III shows the distribution of the ground truth scores

across all 2000 utterances. In general, most of the utterances are
scored 4 or 5, indicating most speakers have an intermediate
competence level in pronunciation skill.

III. BASIC PRONUNCIATION SCORING

This section briefly describes the nine basic scoring methods
used in this study. The required phonetic time alignment and
likelihood for these basic scoring methods are computed by
forced alignment with HMMs which are trained from a large
native corpus (WSJ in this study). Some other sentence-based
scoring methods [23], such as standard deviations of pitch
and power, rate of speech, etc., were also examined. But in
preliminary experimental results, these sentence-based scoring
methods exhibit little correlation to human rankings, probably
because the utterances used in this study only contain a single
word, thus the change in the pitch or power is not as significant
as it would be in a complete sentence. These sentence-based
scoring methods are therefore not considered in this paper.

A. HMM-based Log-Likelihood Score

The HMM-based log-likelihood score , denoted by hmm-
Like, is defined as the duration-normalized log-likelihood of a
phone segment [11]:

(1)

where is the likelihood of the frame with observation
vector , is the duration of the phone segment in frames, is
the index of the starting frame, and represents the th phone
model.
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Fig. 1. Histograms showing the distributions of original duration and log(du-
ration) of 4003 samples of segment.

B. HMM-based Posterior and Log-Posterior Probability Score

The HMM-based log-posterior probability score , denoted
by hmmLPst, is defined as the duration-normalized log-posterior
probability of a phone segment [13]:

(2)

where the frame-based posterior probability is defined
as:

(3)

where is the prior probability of the phone model ,
is the number of competing models of plus 1 and the denomi-
nator term denotes the sum of prior-multiplied likelihoods of all
competing models, including the correct model itself. The com-
peting biphone models here are defined as those models with the
same right-context dependent phoneme. For example, if a, b, c,
d, and e are five pseudo phonetic symbols, the biphone model

would have competing models , , and
, if they exist in the training corpus. In this study, we

also consider the posterior score, denoted as hmmPost, without
taking log in Eq. (2). hmmPost ranges between 0 and 1 and
might fit better to human scoring (as opposed to the log ver-
sion where the score range is between to 0).

C. Duration Distribution Score

Duration distribution score, denoted by durDist, refers to the
likelihood of the phoneme model having the given duration
based on statistics from the native speech corpus [11], [14], [18].
The duration (in frames) of a phone segment is computed via
forced alignment. This value is then normalized by the speech
rate of the corresponding utterance, where the speech rate is de-
fined as the average number of phones per unit of time. The like-
lihood of the normalized duration can then be computed using
a probability density function (PDF) of the corresponding bi-
phone model. Based on [18] and our observations (as shown in
Fig. 1), a PDF of a log-normal distribution is used to model the
distribution of the normalized duration of each biphone. The du-
ration distributions are estimated from the WSJ corpus.

D. Segment Classification Score

The segment classification score, denoted as segClass, is de-
fined as the phone classification accuracy of a word, and thus
it is a word-based score [11]. The idea is that, since the phone
classifier is trained using a native speech corpus, the closer to
native pronunciation the test speaker speaks, the closer the test
speech is to the distribution in the training speech and thus the
higher classification accuracy should be. This type of score is
similar to the rank ratio score (to be described later) in that it
disregards the relative magnitude of the likelihood values but
only asks if the correct model has the highest likelihood among
all competing models.

E. Likelihood Distribution Score

The likelihood distribution score, denoted by likeDist, refers
to the probability of the phoneme model having the given like-
lihood value. Different from durDist, likeDist is based on a
Gaussian CDF (cumulative density function) of the log-likeli-
hood value of the phone segment instead of a Gaussian PDF
[15]. This implies that a higher likelihood value generates a
higher likeDist score. The likelihood distribution of each bi-
phone is estimated from the WSJ corpus. The idea behind this
scoring method is that vowel models tend to have higher likeli-
hood values than consonant models do. They can be shifted to a
common ground by transforming the original likelihood values
using their distributions.

F. Posterior and Log-Posterior Distribution Score

The posterior and log-posterior distribution scores, respec-
tively denoted by postDist and lpstDist, adopt the same for-
mulation as the likeDist score [16]. Since the posterior proba-
bility is computed based on the likelihood and prior probability,
it shares a common characteristic of having larger values for
vowel models and smaller values for consonant models. Log-
posterior distribution score is devised to avoid this problem. We
also examine the use of postDist (without taking logarithm).

G. Rank Ratio Score

The rank ratio score, denoted by rkRatio, is based on the rank
of the correct biphone model among all competing models ac-
cording to their likelihood values [27]. This type of score also
aims to eliminate the natural difference between the likelihood
values of vowel and consonant models. The model with the
highest likelihood value is ranked as 1 and the lowest as
where is the number of competing models (excluding the cor-
rect model). The rank ratio is defined as

(4)

This rank ratio is then transformed to a 0-100 score using a
bell-shaped function:

(5)

where and are set differently for each biphone model to
maximize the scoring performance of each model.
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Fig. 2. Schematic diagram of the proposed score combination method for au-
tomatic pronunciation scoring.

IV. SCORE COMBINATION USING LEARNING TO RANK
In this study we propose an improved version of the score

combination method based on a learning to rank framework.
This method is depicted in Fig. 2. In the training phase, var-
ious phone-level basic pronunciation scores are computed from
the nonnative corpus. These phone-level scores are then con-
verted to word-level scores and are used as the features, along
with the human rankings as the ground truth, to train the LTR
function. The last step is to train the required quantization pa-
rameters to transform the continuous output of the LTR func-
tion, called LTR scores, to discrete ranks between 1 and 5. On
the other hand, the testing phase undergoes similar steps as the
training phase. The same set of phone-level basic scores are first
computed and converted to word-level scores for the input ut-
terance. The LTR function then generates an LTR score from
these word-level scores based on the trained function parame-
ters. The LTR score is then transformed into a discrete rank by
the quantization step. Details of each step are described in the
following subsections.

A. Basic Pronunciation Scoring
In this stage basic pronunciation scores are extracted from the

input utterances. The required parameters for these basic scoring
functions are estimated from the native corpus, including the du-
ration, likelihood, and posterior probability distributions, prior
probabilities, and parameters and for converting a rank ratio
into a rank ratio score.

B. Conversion From Phone-level to Word-level Scores
This step converts the phone-level scores computed from the

previous step into word-level scores. In our previous work [15],
we used average-based word-level scores by averaging out all
phone-based scores within a word instead of using a different
weight for each phoneme based on its duration relative to the en-
tire word [28]. This is because consonants tend to have relatively
shorter durations, but they are as equally important as vowels to
human listening perception. However, we still keep the original

duration-weighted method in this work because forced align-
ment tends to be less accurate on nonnative speech by using
HMMs trained from native data. Thus the forced alignment per-
formance for some phones (such as fricatives and plosives) that
tend to have a shorter duration might be unreliable. We there-
fore want the phones that have longer durations, which are as-
sumed to be more stable, to contribute more towards the word-
level score. In this paper, we also use another two methods
for the conversion to word-level scores (vowel-based and con-
sonant-based word-level scores) to further emphasize the ef-
fect of vowels and consonants on determining the pronunciation
quality [16]. Vowel-based word-level scores are computed by
averaging only phone-level scores of all vowel segments within
a word; consonant-based word-level scores are computed by
averaging only phone-level scores of all consonant segments
within a word.
The four conversion methods (average-based, vowel-based,

consonant-based, and duration-weighted) are applied to all 9
basic scores to render 36 word-level scores. The performance
of these 36 scores is examined in the experimental section.
These basic scores in their original forms, called raw basic

scores, can be used directly as the input to the LTR function.
However, we found that some of the basic scores have wider
ranges than other basic scores, and preliminary experimental
results show that the performance of some score combination
methods can be improved by re-scaling these basic scores. We
will also discuss this issue in the experimental section.

C. Learning to Rank Function
Learning to rank [29] is originally a technique used in

information retrieval (IR). It is a supervised or semi-super-
vised machine learning algorithm for automatically building a
ranking model to rank items (or often referred to as a document
in IR) under a certain query based on the given features in
a ranking problem. Many algorithms have been proposed
in the past decades and can be generally classified as the
pointwise approach (e.g. PRank [30]), the pairwise approach
(e.g. RankSVM [31], RankBoost [32], and RankNet [33]), and
the listwise approach (e.g. ListNet [34]). From a discriminative
learning viewpoint, these approaches define different input and
output spaces, employ different hypotheses, and adopt different
loss functions [29].
In the pointwise approach, a single item is used as a training

instance and the output is a score or a relevance degree of that
single item to the corresponding query. The hypothesis space
contains functions that take the feature vector of an item as the
input, and output the predicted score or relevance degree. This
function is generally regarded as a scoring function. The loss
function measures the difference of the predicted score to the
ground truth score for each item. The final ranked list can be
generated by sorting the output scores of all items.
In the pairwise approach, a pair of items is used as a training

instance and the output is a binary-valued pairwise preference,
indicating whether or not the first item is preferable to the
second item for the corresponding query. In addition to the bi-
nary-valued pairwise preference, Zhou et al. [35] introduced an
extra tie preference relation to make use of the tie pairs which
are skipped in most of the pairwise algorithms. The hypothesis
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space contains functions that operate on the feature vector
of a pair of items and output the predicted preference of that
item pair. The loss function measures inconsistency between
the predicted preference and the ground truth preference. The
final ranking list can be reconstructed either by using a greedy
algorithm that aims to satisfy as many ordered pairs as possible
[36] or simply by sorting the scores which are generated by the
hypothesis function for computing the pairwise preference.
In the listwise approach, a list of items is used as a training

instance. The output may be either a ranked list itself (no addi-
tional computation is required to generate the final ranking list)
or relevance degrees (sorting is required to generate a ranking
list). The hypothesis function is a multivariate function, often
implemented as a scoring function that operates on a group
of items and outputs their permutation or predicted relevance
degrees. The loss function is defined on the approximation or
bound of some IR evaluation measures (if the output is rele-
vance degrees) or measures the difference between the predicted
ranked list and the ground truth ranked list (if the output is a
ranked list).
Note that, although the ground truth data are different in all

three approaches (relevance degrees, pairwise preferences, or
ranked lists), they can be converted easily from one type to an-
other. For instance, pairwise preference data can be obtained
from the relevance degree data by pairing two samples in dif-
ferent permutations.
Since we only focus on validating the effectiveness of the

learning to rank framework as a score combination method,
we do not use any human-labeled pairwise or listwise scoring
data. The required pairwise and listwise labels for the training
data are generated from the human ranking data (as described
in Section II-C).
Similar to the pointwise approach in learning to rank, most

of the existing score combination methods for pronunciation
scoring adopt loss functions that measure the difference between
the predicted score and the ground truth score of each single ut-
terance without considering the relative order among different
utterances.We therefore propose the use of pairwise and listwise
learning to rank algorithms to combine various basic pronunci-
ation scores. The advantage of these algorithms is that their loss
functions naturally take the relative order among utterances into
account: the pairwise approach considers the relative order be-
tween two items and the listwise approach considers the relative
order among a list of items. Two learning to rank algorithms,
RankSVM and ListNet are examined in this study.
Before explaining what RankSVM and ListNet do, we first

state the ranking problem as follows. Suppose there are
queries in the training set, and there are
items associated with the th query . A
feature vector can be extracted from the query-item pair

, and this item has a ground truth judgment or
score with respect to the query . The goal of the ranking
problem is to find a ranking function such that the predicted
ranking order, based on the computed score of
each item , is as close to the ground truth ranking order
(based on of each item) as possible.

In our pronunciation scoring problem, we assume that all ut-
terances are associated with a single query ( ) so that the
ground truth scores for all utterances can be compared with one
another. The formulation in the rest of this subsection is pre-
sented in the context of pronunciation scoring, i.e. there are
utterances associated with a single query. Each utterance has
a feature vector and ground truth scores .
RankSVM [31] is a pairwise learning to rank algorithm that

uses SVM (support vector machine) [37] to make a binary de-
cision on the preference of a pair of utterances. RankSVM has
exactly the same objective function as SVM but is subjective
to different constraints. RankSVM’s constraints are constructed
from utterance pairs. The loss function for RankSVM is a hinge
loss that is also defined on utterance pairs.We choose RankSVM
for the pairwise approach because of its various advantages in-
herited from SVM, such as good generalization with margin
maximization and kernelized methods for handing nonlinear
problems.
ListNet [34] is a listwise learning to rank algorithm. A simple

linear neural network shown in Eq. (6) is used as the scoring
function.

(6)

The probability of having a certain permutation of given
scores of utterances can then be computed. However, the
number of permutations is of order , making it impractical
to compute the probabilities for all possible permutations. The
number of permutations can be greatly reduced by computing
the top- probability of out of utterances in the order of

( is the index of the item that is ranked
at position ), i.e. the probability of these utterances being
ranked on the top positions in the given order. By assuming

as in [34], the top-1 probability of utterances simplifies
to the following form:

(7)

where is the score of the utterance that is ranked on the first
position. By computing for all utterances, we can obtain
a probability distribution of the scores . Thus, for our pronun-
ciation scoring problem, we can have a probability distribution
of ground truth judgments and a probability distribution
of computed scores for . Cross entropy is
then adopted as the listwise loss function to measure the differ-
ence between the two distributions:

(8)

Next, gradient descent is used as the optimization algorithm to
minimize this loss function. After differentiating Eq. (8), we can
obtain the gradient of with respect to parameter as:

(9)

Thus, the parameter can be updated iteratively by
, where is the learning rate of gradient descent. The
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learning process continues through several iterations until a cer-
tain condition is met, say the change in loss is below a threshold
or a given number of iterations are reached.
For a given new utterance , the score , called the LTR

score in Fig. 2, can be computed using Eq. (6) with the trained
parameter and the utterance’s feature vectors . Detailed
derivation and explanation of the ListNet algorithm can be
found in the literature [19]–[38].

D. LTR Score Quantization

There are two reasons for adopting this score quantization
technique. First, since the objective of the LTR function is to
generate scores that maintain the ranking order as close to the
correct order as possible, the LTR scores are not guaranteed to
fall into a specific numerical range. What is guaranteed is that
the input samples with the same estimated rank have similar
LTR scores, i.e. the input samples are orderly clustered based
on their estimated ranks. We use this characteristic to transform
the LTR scores to discrete ranks by applying score quantization,
i.e. finding the boundary between each pair of adjacent clus-
ters (ranks) from the training data. Second, in our experiment,
we found that some basic scoring methods, e.g. hmmLPst, gen-
erate scores that mostly stay in a certain range but occasionally
deviate significantly from this range. These few super low (or
super high) scores degrade the performance in terms of the cor-
relation coefficient. When we apply our score quantization tech-
nique to these basic scores, the super low scores become 1 while
the super high scores become 5.
Chen and Jang [15] proposed a DP-based method to find the

optimal quantization boundaries to minimize the discrepancy
between human and computer rankings. Let
be the LTR scores and be the corresponding
human rankings with values between 1 and . Without loss of
generality, we assume the elements of vector are sorted in an
increasing order. Our goal is to find boundaries

to map the original LTR scores to ranking.
Specifically, the mapping function is defined as

(10)
We need to find such that, after mapping, the rankings can be
as close as possible to those labeled by humans. We can then
define the objective function as follows:

(11)

where is the desired rank while is the computed rank.
By minimizing , the computed rank can be made as close
as possible to the human rank. To deal with such a problem in
a DP framework, we first need to define the optimum-valued
function representing the minimum cost of mapping

( ) to a rank range of ( ).

We can then come up with the recurrent equation for as
follows:

(12)
where and . The initial conditions are

(13)

The optimum cost is equal to . As a common practice
in DP, after is found, we can backtrack to find the op-
timum path together with the optimum values of .
The above algorithm works well in most of the cases. How-

ever, in this study where the data distribution among all classes
is highly imbalanced–over 55% of utterances are scored as 5
while only less than 10% are scored as either 1 or 2–preliminary
experimental results show that the current algorithm strongly
favors the larger class, i.e. the class with more training data.
As a result, boundaries around the smaller classes are poorly
estimated while the boundaries around the larger class are ex-
cessively widened to cover almost all data. This phenomenon
yields a good recognition rate, since most of the data belongs to
class 4 or 5, and yet a poor correlation coefficient is obtained.
Here we propose a class-normalized DP-based quantization

algorithm to alleviate this problem. A normalizing term is added
to Eq. (11) as follows.

(14)

where represents the number of data points in class , and
is the parameter controlling the degree of normaliza-

tion. The corresponding recurrent equation for DP can be refor-
mulated accordingly. If , this normalizing term becomes 1
and the algorithm is exactly the same as the original one where
each data point contributes equally and the larger class domi-
nates the learning process. On the other hand, if , the
dominating effect of the larger class is suppressed and each class
contributes equally to the learning process. In the experimental
section we examine the effect of different settings for on quan-
tization performance.

V. EXPERIMENTAL RESULTS
In this section, we start from evaluating the performance of

each basic pronunciation score using four phone-level to word-
level score conversion methods. The best basic scoring method
serves as the baseline for the score combination methods. We
also test the effectiveness of class-normalized DP-based score
quantization on the best performing basic score under different
parameter settings. The best performing score quantization set-
ting is then applied to all basic scores. Lastly, the performance
of the proposed method is compared with that of the baseline
as well as three existing score combination methods proposed
in [17] and [18]. Only the better performing basic scores (either
quantized or in their raw forms) are used for score combination.
In the experiment, utterances from 20 speakers are used as the

training set while utterances from the remaining five speakers
are used as the test set. The training set is used for basic score
selection and parameter training/tuning for both the proposed
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score quantization method and all score combination methods.
The test set is only used for the final performance comparison of
all score combination methods. The WSJ corpus is used to train
1492 biphone HMMs for speech recognition. For computing
the basic pronunciation scores involving distribution estimation
(duration distribution score, likelihood distribution score, and
posterior distribution score), we estimate the distributions of all
biphone models as well as their main monophones. Here we do
not train another set of monophone models exclusively; we in-
stead collect all samples from their biphone derivatives and es-
timate the distribution (e.g. for estimating the distribution for
monophone /a/, we collect all samples from its biphone deriva-
tives , , , … and so on). If an unseen
biphone model is found (i.e. a biphone model that exists in the
corpus that is used to train HMMs but does not exist in the part of
the corpus that is used to estimate the distributions) we roll back
the distribution of the biphone model to its monophone version.
The monophone distribution is also used instead of the biphone
one when the variance of the distribution is zero (i.e. a biphone
model that only has one sample or has multiple samples with
the same value). This roll back strategy avoids unstable statis-
tics for the rarely seen biphone models.
In terms of measuring the closeness of the computed scores

to the human scores, we use the correlation coefficient as the
performance measure. This approach has been adopted in
most of previous research on automatic pronunciation scoring
[14]–[17]. The reason is that users of a CAPT system would
accept frequent slightly inaccurate scoring results (higher cor-
relation) rather than occasional extremely inaccurate scoring
results (higher recognition rate). However, since the proposed
class-normalized quantization is based on a criterion to min-
imize the difference in computed and human scores, we will
also show the change in class recognition rate for the analysis
purpose (Section V-B). In this study, the correlation computed
using the scores (either basic or combined) in their raw forms
is denoted as raw correlation (raw corr) and the correlation
computed using the scores in the quantized form is denoted as
rank correlation (rank corr).

A. Evaluation of Basic Scores using Different Conversion
Methods

Fig. 3 shows the performance of the 9 basic pronunciation
scores using different phone-level to word-level conversion
methods described in section IV-B. This experiment is per-
formed only on the training set. From this figure, we can
observe the following issues.
First, the result shows that rkRatio, hmmLPst, hmmPost, lp-

stDist, and segClass are generally better basic scoring methods
for our dataset, while hmmLike and likeDist show extremely un-
stable performance. This is similar to the result shown in [13],
i.e. hmmLike is not as stable as other scoring methods.
Second, the average-based method performs better than the

other three conversion methods. This result is reasonable since
the influence of a phoneme of a word towards the overall pro-
nunciation quality is not always directly proportional to its du-
ration. Therefore, a duration-weighted method might underesti-
mate some shorter phonemes such as fricatives and plosives. It
is also clear that vowel-based or consonant-based basic scores
alone yield poorer performance when they are compared with

Fig. 3. Correlation coefficient (raw corr) between basic scores and human
scores with different phone-level to word-level score conversion methods.

TABLE IV
SCORE DISTRIBUTION OF THE BASIC SCORE HMMLPST (AVERAGE-BASED)

the corresponding average-based basic scores. This is also ex-
pected since the pronunciation quality cannot be judged solely
based on either vowels or consonants, as shown in the tight/sight
example. However, [16] shows that incorporating both vowel-
based and consonant-based basic scores can enhance the perfor-
mance of score combination, thus we still keep these scores for
score combination.
Third, hmmLPst (the one with log) performsworse than hmm-

Post (the one without log). This is probably because hmmPost
does not have a skewed distribution as hmmLPst does. This
skewed distribution of hmmLPst amplifies the difference be-
tween the computed scores and the ground truth scores for com-
puting the correlation coefficient, especially for those scores that
seriously deviate from the rest. Table IV shows the score dis-
tribution of averaged-based hmmLPst on the training set. Over
92% of the scores are concentrated in the range between and
0 while less than 3% are in the range between and . On
the other hand, hmmPost is always in the range between 0 and 1
and does not have this problem. However, when it comes to the
distribution score, the score with log (lpstDist) performs signif-
icantly better than the score without log (postDist). We assume
that the scores with log are still a better representation of human
judgment than the scores without log, but that the skewed dis-
tribution of hmmLPst is a disadvantage in computing the cor-
relation coefficient. We will justify this assumption in the next
experiment.
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Fig. 4. Performance comparison on quantizing average-based rkRatiowith dif-
ferent values (raw correlation is 0.326).

Finally, durDist is shown to be somewhat effective as demon-
strated in [11] except for the consonant-based durDist, possibly
due to the unreliable performance of the forced alignment of
short consonant segments (particularly obstruents, such as /t/
and /s/).

B. Evaluation of Class-Normalized Score Quantization

In this experiment we examine the effectiveness of applying
the proposed score quantization technique to basic scores. For
simplicity, we apply score quantization, under different settings
of , only to the best performing basic score (i.e. averaged-
based rkRatio) on the training data to find the best value. This
value is then applied to quantize all other basic scores.
Fig. 4 shows the result of finding the best . The top figure

shows the change in rank correlation with different values of ,
while the bottom figure shows the change in score recognition
rate (by treating scores 1 to 5 as five different classes). It can
be seen that the rank correlation generally increases when
increases from 0.2, but not very stably. This is probably because
the optimization on score quantization is based on minimizing
the difference between computed scores and ground truth scores
and is not directly based on correlation (efficient optimization
directly based on correlation is difficult, since the sample mean
is unknown during the DP computation). However, by looking
at the change in the score recognition rate, the influence of class-
normalized score quantization is obvious.When increases, the
smaller classes contribute more towards the learning process
while larger classes receive less attention, hence the decrease
in recognition rate. Although more elements are misclassified
after class normalization, the misclassified elements are closer
to their ground truth values and thus the correlation is higher.
As shown in Fig. 4, the correlation reaches its highest point

when is 0.85 and 0.9. We use to quantize all other
basic scores and also for the LTR score quantization stage.
Table V shows the change in correlation after quantizing all

basic scores with . The top row shows the raw cor-
relation (basic score before quantization) while the bottom row
shows the rank correlation (basic score after quantization). Most
of the basic scores improve after quantization, especially for

TABLE V
CORRELATION COEFFICIENTS BETWEEN BASIC SCORES AND HUMAN
SCORES. THE TOP ROW SHOWS RAW CORRELATION (BASIC SCORE
BEFORE QUANTIZATION) WHILE THE BOTTOM ROW SHOWS RANK

CORRELATION (BASIC SCORE AFTER QUANTIZATION). GRAY REGIONS
SHOW THE BASIC SCORES SELECTED FOR SCORE COMBINATION

hmmLPst. The improvement confirms that quantization can al-
leviate the skewed distribution problem. It is also clear that,
after quantization, the scores related to log-posterior probability
(hmmLPst and lpstDist) perform better than their counterpart
scores without taking logarithm (hmmPost and postDist).

C. Performance Comparison of Various Score Combination
Methods
Based on the performance shown in Table V, we select only

the 16 basic scores for which raw or rank correlations are greater
than 0.2 for further score combination. If the scores both be-
fore and after quantization show a correlation greater than 0.2,
the higher one is selected. Also, the log-posterior related scores
(hmmLPst and lpstDist) perform better than the corresponding
scores without taking logarithm (hmmPost and postDist) so that
such scores are not selected here. The selected basic scores are
shown as the gray regions in Table V.
To evaluate the effectiveness of the proposed method, we

compare it with the best performing basic score, average-based
rkRatio, as well as three other existing score combination
methods described in section I: GCE (Gaussian classifiers
with expectation, the first method proposed in [18]), LCA
(linear classifiers with score adjustment, the second method
proposed in [18]), and NN (neural network, the best performing
method proposed in [17]). The basic score rkRatio serves as
the baseline for all score combination methods. GCE estimates
the Gaussian distributions from the training data and the ex-
pectation is computed based on the likelihood of five Gaussian
distributions. As for the LCA approach, different degrees
( ) of multiplicative polynomial transformation are tested
and it turns out that degree of 6 performs the best. As for the
NN approach, we adopt the same architecture as suggested in
[17]: a two-layer perceptron with a single linear output layer
and sigmoidal units for the hidden layer. The training
algorithm is backpropagation with minimum mean square error
criterion. The best performing number of sigmoidal units (4 in
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this study) is chosen for comparison. Since these three score
combination methods learn from the training data to produce
combined scores that are as close to their ground truth scores
as possible (unlike the learning to rank methods that learn
to produce combined scores for preserving the relative order
in magnitude), we simply round off the raw basic scores to
obtain quantized scores. For comparison purposes, we also try
quantizing the raw predicted scores of these three methods
using the proposed class-normalized score quantization method
(denoted as , , and ).
Since we intend to generate the scores from a ranking per-

spective, we also compare the proposed method with two or-
dinal regressionmodels: the ordered logitmodel and the ordered
probit model [39]. Both methods, similar to the pointwise ap-
proach in learning to rank, estimate the predicted probability of
each category (score 1-5) for an input utterance, and the cate-
gory with the highest predicted probability is chosen as the com-
puted rank. Since their output is a discrete rank, raw correlation
is not computed for these two methods.
For the proposed method, we use two learning to rank algo-

rithms: RankSVM and ListNet. For RankSVM, we used the im-
plementation provided by Joachims [31]. Different values for
the regularization parameter (i.e. the “C” multiplier that con-
trols the trade-off between training error and margin) with a
linear kernel are tested and the best performing parameter (

) is chosen for comparison. For ListNet, different settings
of the loss change threshold and learning rate are tested by grid
search and the best performing setting (1.5 learning rate, 10
loss change and 475 max iteration) is chosen for comparison.
One issue we found during the preliminary experiment is that

ListNet is very susceptible to the numerical range of each di-
mension of the feature. Its performance is significantly lowered
when the selected 16 basic scores are used directly. Among
these 16 basic scores, the six raw basic scores (shown as the
shaded top-row scores in Table IV) range between 0 and 1,
while the other 10 quantized basic scores (shown as the shaded
bottom-row scores in Table IV) are between 1 and 5. We simply
divide the quantized basic scores by 5 tomake all 16 basic scores
in the same range (i.e. 0 to 1). ListNet performs the best when
all basic scores are in the same range. On the other hand, the
other four score combination methods perform exactly the same
or with only very subtle differences regardless of whether the
ranges of all basic scores are the same. The following experi-
ment presents results for all basic scores in the same range.
Given that the dataset is imbalanced (i.e., most utterances are

rated as 4 and 5) and correlation alone might not completely re-
flect performance, we further analyze performance in terms of
mispronunciation detection, as this better fits the goal of guiding
L2 learners to speak intelligibly. Based on the scoring guideline
shown in Table I, we label scores of 4 and 5 as “intelligible” and
score of as “mispronounced” for both human scores and
computed quantized scores. Performance is measured in terms
of pFA (probability of false alarm, i.e., the proportion of ac-
tual intelligible pronunciation which is incorrectly identified as
mispronunciation) and pMiss (probability of miss or miss rate,
i.e., the proportion of actual mispronounced utterances which
is incorrectly identified as intelligible pronunciation). Given a
learning scenario in which an L2 student is asked to practice

Fig. 5. Performance comparison for mispronunciation detection in terms of
pFA and pMiss. (a) plot of all methods with trained parameter set, (b) Figure of
merit for the four best performing methods, (c) DET plot of all methods with
different parameter settings.

the pronunciation of a word until he or she succeeds in pro-
ducing a correct pronunciation, it is more important to correctly
detect mispronounced utterances, i.e. pMiss is more important
than pFA.
The final performance comparison is shown in Table VI and

Fig. 5. Fig. 5(a) shows the DET plot of all methods with pa-
rameters trained on the training data. Since it is not obvious to
identify which method performs the best among the four best
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TABLE VI
OVERALL PERFORMANCE COMPARISON. GRAY REGIONS INDICATE

THE BEST VALUE OF EACH PERFORMANCE MEASURE

performing methods ( , , RankSVM,
and ListNet) in Fig. 5(a), we further compare their performance,
as shown in Fig. 5(b), by using figure of merit ( ) which is
defined as

(15)

where is a value between 0 and 1, representing the importance
of pMiss over pFA. Since pMiss is more important than pFA,
we only show the section where . In addition, we only
show the four methods that clearly outperform the other seven
methods in Fig. 5(b) for the sake of simplicity.
In order to show the performance of all methods across their

full operating range, we also include the DET plot of all methods
with various parameter settings in Fig. 5(c). Note that these
scoring methods are designed for predicting scores of 1 to 5 so
that, unlike any binary classification problem, it does not have
a discrimination threshold. Hence we only show the discrete
points representing the pFA and pMiss of all methods with var-
ious parameter settings. Also note that average-based rkRatio,
GCE, , ordered logit, and ordered probit do not
have any tunable parameters so that each of the five methods
only has one point in Fig. 5(c). The method using
different degrees of multiplicative polynomial transformation
yields the same pFA and pMiss so that it also has only one point
in Fig. 5(c). All the parameter training and tuning described
above is performed on the training data, and the performance
shown in Table VI and Figure 5 uses the test data. This explains
why the performance of andRankSVM in Fig. 5(a) is
not the best one in Fig. 5(c). Experimental observations are as
follows.
1) The GCE approaches (GCE and ) do not out-

perform the basic score average-based rkRatio in terms
of both raw correlation and rank correlation, as shown in
Table VI. This might be due to the distribution of our data
being not Gaussian-like, thus producing poor distribution
estimates. Another potential reason is that the GCE ap-
proaches are less flexible as they only have a few param-
eters to define the prediction process (i.e., only one mean
and one variance for each Gaussian distribution).

2) Without using the proposed quantization method, LCA and
NN suffer from the problem of imbalanced data–most of

the recognized utterances produce scores of 4 or 5, thus
yielding a low pFA and high pMiss. The proposed score
quantization method alleviates this problem and the pMiss
values of both methods ( and )
drop below 20%, as shown in Table VI. The improvement
is also shown in terms of correlation.

3) The two ordinal regression methods, ordered logit and
ordered probit, perform the worst among all methods,
as shown in Table VI, since these pointwise methods do
not consider the relative order between utterances in the
learning process [29]. On the other hand, low pFA and
high pMiss shows that these methods are also affected by
the imbalanced distribution of the dataset.

4) The proposed methods using RankSVM and ListNet per-
form the best among all methods in terms of both raw
and rank correlations, as shown in Table VI. Despite the
effectiveness of the learning-to-rank algorithm itself (as
demonstrated by its high raw correlations), class-normal-
ized score quantization minimizes the error in each class so
that the larger classes do not dominate the learning process
and thus a better rank correlation is achieved. As expected,
ListNet performs better than RankSVM, since ListNet con-
siders the relative order of the entire training data rather
than just a single data pair at a time as in RankSVM. A
Wilcoxon signed rank test performed on the rank output
of the method, the best performing previous
method, and the proposed ListNet method shows that the
-value is less than the 0.05 level ( ), which in-
dicates the improvement over the previousmethod is statis-
tically significant. ListNet also achieves the lowest pMiss
and the best figure of merit in Fig. 5(b) for ,
showing that its performance in terms of mispronunciation
detection is also satisfactory.

Also note that the required computation time for each score
combination method is different. On the same computer, GCE
and LCA, including testing for five different degrees multiplica-
tive polynomial transformation, take less than oneminute; while
NN takes around 20 minutes, including experimenting with 15
different numbers of sigmoidal units; RankSVM takes about
hours, including experimenting with 16 different values for the

regularization parameter; both ordinal regression methods take
a few seconds; and ListNet also takes about a few seconds for
each trial of the different parameter sets, and a total of around

trials were performed to find the best parameter set by
grid search. All experiments were conducted on a laptop with
an Intel Core i5 CPU (2.27 GHz) and 8 GB of RAM.

VI. CONCLUSION

This paper proposes an automatic pronunciation scoring
framework with score combination based on learning to rank
and class-normalized DP-based quantization. The key findings
are as follows.
1) We examine nine basic pronunciation scoring methods

with four methods to convert phone-level scores to
word-level scores. Experimental results show that av-
erage-based scores outperform the other three conversion
methods.
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2) Applying the proposed class normalization technique to
score quantization alleviates the problem of imbalanced
data over different classes.

3) Applying this class-normalized score quantization to some
of the basic scores can improve their correlation to human
rankings.

4) The proposed learning-to-rank framework, particularly the
ListNet method, achieves a better correlation to human
rankings and a better accuracy in detecting mispronunci-
ations than other score combination methods, proving the
effectiveness of the proposed framework.

A number of future research directions are identified as fol-
lows. Firstly, the basic scores used in this research are based on
the likelihood and duration of the phoneme segment. Acoustic
features such as stress information (for an English word) and
intonation (for a sentence) are not yet considered in this study.
However, our dataset consists of the pronunciation of a single
English word in each utterance. Preliminary error analysis
shows that some utterances have good pronunciation but with
incorrect stress placement. This is currently not captured by
our system but shall be considered in the grading process.
Secondly, different learning to rank approaches can be tested
instead of RankSVM. According to [29], RankSVM has the
best performance of all pairwise algorithms, but at a price of
increased computation complexity. Other pairwise algorithms
such as RankBoost or RankNet can be tested to obtain a balance
between the computation cost and performance. On the other
hand, we can also adopt the tie data to best make use of the
limited training data. Thirdly, we currently use the human
ranking data (1-5 scale) to simulate the pairwise data by making
combinations of each possible pair of the available data. In
real situations, however, scoring directly in a pairwise manner
poses a data sparsity problem since the number of data pairs
is now quadratic to the data size. It would be impractical to
label all pairs and we have to work with sparse data. A possible
solution is to use a greedy algorithm to approximate the global
order from partial pairwise comparisons [19][36].
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